Problem 2A,9

Prove that $|A|=\lim _{t \rightarrow \infty}|A \cap(-t, t)|$ for all $A \subset \mathbb{R}$.
Proof: By 2.5 we know that the limit exists and $|A| \geq \lim _{t \rightarrow \infty}|A \cap(-t, t)|$. Now we prove the converse direction. First note that

$$
|A \cap(-t, t)|=|A \cap(-t, t]|
$$

then we have

$$
|A|=\left|\bigcup_{k=-\infty}^{+\infty} A \cap(k, k+1]\right| \leq \sum_{k=\infty}^{+\infty}|A \cap(k, k+1]|=\lim _{N \rightarrow+\infty} \sum_{k=-N}^{+N}|A \cap(k, k+1]|=\lim _{N \rightarrow \infty}|A \cap(-N, N+1)|
$$

Using

$$
\lim _{N \rightarrow \infty}|A \cap(-N, N+1)|=\lim _{t \rightarrow \infty}|A \cap(-t, t)|
$$

then we finish the proof.

Problem 2A,10

Prove that $|[0,1]-\mathbb{Q}|=1$.
Proof: Note that $|[0,1]|=1,|\mathbb{Q}|=0$ by 2.4 and 2.14 .Obviously $|[0,1]-\mathbb{Q}| \leq 1$, and on the other hand,

$$
1=|[0,1]|=|\mathbb{Q} \cup([0,1]-\mathbb{Q})| \leq|\mathbb{Q}|+|[0,1]-\mathbb{Q}|=|[0,1]-\mathbb{Q}|
$$

this completes the proof.
Problem 2B,14
a. Suppose f_{1}, f_{2}, \ldots is a sequence of functions from a set X to \mathbb{R}. Explain why

$$
\left\{x \in X: \text { the sequence } f_{1}, f_{2}, \ldots \text { has a limt }\right\}=\bigcap_{n=1}^{\infty} \bigcup_{j=1}^{\infty} \bigcap_{k=j}^{\infty}\left(f_{j}-f_{k}\right)^{-1}\left(\left(-\frac{1}{n}, \frac{1}{n}\right)\right)
$$

b. Suppose (X, \mathcal{S}) is a measurable space and f_{1}, f_{2}, \ldots is a sequence of \mathcal{S} - measurable functions from X to \mathbb{R}. Prove that

$$
\left\{x \in X: \text { the sequence } f_{1}, f_{2}, \ldots \text { has a limt }\right\}
$$

is an \mathcal{S} measurable set.
Proof: For a, we just recall that if f_{1}, f_{2}, \ldots has a limit at x, then for any positive integer n, there exists $N=N(n)$ such that for any $j, k>N$, we have $\left|f_{j}(x)-f_{k}(x)\right|<\frac{1}{n}$. This is exactly the conclusion of a.

For b , just note that the set in the right hand of a is an \mathcal{S} measurable set.

Problem 2B,25

Suppose $B \subset \mathbb{R}$ and $f: B \rightarrow \mathbb{R}$ is an increasing function. Prove that there exists a sequence of funcions f_{1}, f_{2}, \ldots of strictly increasing functions from B to \mathbb{R} such that for every $x \in B$,

$$
f(x)=\lim _{k \rightarrow \infty} f_{k}(x)
$$

Proof: $f_{k}(x)=f(x)+\frac{x}{k}$ satisfies the conclusion.

Problem 2C,1

Explain why there does not exist a measure space (X, \mathcal{S}, μ) with the property that $\{\mu(E): E \in S\}=[0,1)$

Proof: Otherwise for such (X, \mathcal{S}, μ), take $E_{i} \in \mathcal{S}$ such that $\mu\left(E_{i}\right)=1-\frac{1}{i}$. We know that $E=\bigcup_{j=1}^{\infty} E_{i}$ is also measurable but $|E| \geq \lim \sup _{j \rightarrow \infty} E_{j} \geq 1$. This is a contradiction with our definition, which completes the proof.

Problem 2C,2

Suppose μ is a measure on $\left(\mathbb{Z}^{+}, 2^{\mathbb{Z}^{+}}\right)$. Prove that there is a sequence $\omega_{1}, \omega_{2}, \ldots$ in $[0, \infty]$ such that for every set $E \subset \mathbb{Z}^{+}$

$$
\mu(E)=\sum_{k \in E} \omega_{k}
$$

Proof: Just let $\omega_{k}=\mu(\{k\})$ for any $k \in \mathbb{Z}^{+}$.

Problem 2D,5

Prove that if $A \subset \mathbb{R}$ is a Lebesgue measurable, then there exists an increasing sequence $F_{1} \subset F_{2} \subset \ldots$ of closed sets contained in A such that

$$
\left|A-\bigcup_{k=1}^{\infty} F_{k}\right|=0
$$

Proof: By 2.71, we know that for any k, there exists a closed set $E_{k} \subset A$ such that $\left|A-E_{k}\right|<\frac{1}{k}$. Now take $F_{k}=\bigcup_{j=1}^{k} E_{j}$. These F_{k} satisfy all the condition, which is easy to check.

Problem 2D,12

Suppose $b<C$ and $A \subset(b, c)$. Prove that A is Lebesgue measurable if and only if

$$
|A|+|(b, c)-A|=c-b
$$

Proof: The "only if" part is obvious. Conversely, from the definition of outer measure we know that there exists a Borel set $B \subset(b, c)$ containing A such that $|B|=|A|$. And we know that

$$
|B|+|(b, c)-B|=c-b
$$

Note that B i Lebesgue measurable imply

$$
|(b, c)-A|=|((b, c)-A) \cap((b, c)-B)|+|((b, c)-A) \cap B|=|B-A|+|(b, c)-B|
$$

so we get that

$$
|B-A|=|(b, c)-A|-|(b, c)-B|=|B|-|A|=0
$$

which imply $B-A$ is Lebesgue measurable and $A=B-(B-A)$ is also Lebesgue measurable.

Problem 2D,13

Suppose $A \subset \mathbb{R}$. Prove that A is Lebesgue measurable if and only if for every positive integer n,

$$
|(-n, n) \cap A|+|(-n, n)-A|=2 n
$$

Proof: If A is Lebesgue measurable, then by 2.70 there exists a Borel set $B \subset A$ such that $|A-B|=0$. Now by 2.66 ,

$$
|(-n, n) \cap B|+|(-n, n)-B|=2 n
$$

Combining with $|A-B|=0$, we get that

$$
|(-n, n) \cap B|+|(-n, n)-B|=2 n
$$

Conversely, suppose that

$$
|(-n, n) \cap A|+|(-n, n)-A|=2 n
$$

for any positive integers n. Using Problem $2 \mathrm{D}, 12$ we know that $A \cap(-n, n)$ is Lebesgue measurable. Then $B=\bigcup_{j=1}^{\infty} B \cap(-n, n)$ is also Lebesgue measurable. This completes the proof.

